M

Rafael Pires
rafael.pires@epfl.ch

N
—

Information, Calcul et Communication

CS-119(k) ICC - Théorie
Semaine 3

m
o
"1
-

Lausanne, 07.03.2025

mailto:rafael.pires@epfl.ch

M

P

Précédemment, dans ICC-T 02

==
i

= Les sous-algorithmes

o Probleme : Tri parinsertion

= Lacomplexité temporelle

o hombre d’opérations élementaires dans le pire des cas

= La notation Grand Theta ®

\
l | l o Probleme : Deux font la paire

L

Annonces 31.03 ICC-P Cours par zoom (aussi diffusé en salle)
Séance d’exercices normale
Cours et séries, partie programmati

P s DEDEOEEn
: e T mEEER

Cours et séri rtie théorique

14.03 ICC-T Changement de salle
exceptionnel : CM14

=P-L 3

M

v
N
r

Aujourd’hui

= Larécursivité

= Complexité logarithmique

= Tri par fusion

La legende des tours de Hanoi

L.
LJ

Conception d’algorithmes : Diviser pour mieux regner

C)
|

)32

S . .
[] g =~/

Probleme entier Sous-problemes Cas trivial

a

@:

M
g
N
—

Récursivité

Probleéme entier Sous-problémes Cas trivial

cPrL

Récursivité vs. récurrence

~

e La Factorielle :
nl=nx*m-1)!
ol=1

» Suite de Fibonacci :
Fm)y=Fn—1)+F(n-2)

_ F(0)=F(1) =1)

» Les coefficients binomiaux :
n _ _
W=G-D+(")
(0)=(n) =1

&fﬁ% fA f‘? Amf}

Ak A&A ﬁ&é‘%‘n amm 5‘3\ L)

Problemes

La Factorielle La suite de Fibonacci Les tours de Hanoi

Probleme : Factorielle

La factorielle d’'un nombre entier n.
n=nxMmn-—1)*-*2=x1
nl=nx*mn-1)!

10

Attention

Un algorithme recursif doit toujours
avoir une condition de terminaison.

11

Probleme : Factorielle

La factorielle d’'un nombre entier n.
n=nxMmn-—1)*-*2=x1
n=n+xn-1)'et0! =1

Factorielle

Condition de | entrée : entier naturel n
terminaison sortie : n!

|_>< i SS;rtir _ Instance plus

Sinon simple
Sortir: actoriell]

Recombinaison

12

Comment implementer la réecursivité

Un algorithme récursif doit avoir une . .
L .. Mon algo récursif
condition de terminaison. ®

entrée : X
. L . . <y sortie: ...
Un algorithme récursif fait appel a lui- —
méme avec une instance plus simple S
du probléme original. @ Sinon
- Parfois, il faut recombiner les résultats Mon algo 'ec“'s'@ dellinstance @
d’appels réecursifs pour former la -~

solution au probleme de départ.

13

M
g
N
—

Exécution : Factorielle

entrée : entier naturel n
sortie : n!

Factorielle

Sin<=1
Sortir: 1
Sinon

Sortir : n * Factorielle(n-1)

Pile d’exécution

Factorielle(n = 3)

Sortir : 6

Factorielle(n = 3)

Factorielle(n = 2)

Sin<=1
Sortir : 1

Sin<=1
Sortir : 1

Sinon Sinon
Sortir: 3*2 [::>- Sortir: 2*1

Réponse : 6

o

Factorielle(n = 1)

Sin<=1
Sortir : 1

Sinon
L :: >- Sortir : 1 * Factorielle(0)

14

M
N

Quelques observations

chaque appel recursif a une fonction crée son propre contexte

Factorielle(n = 2)

Factorielle(n = 1)

Sin<=1
Sortir : 1

Sinon
Sortir : 2 * Factorielle(1) | >

Sin<=1
Sortir : 1
Sinon
Sortir : 1 * Factorielle(0)

le flux de controdle revient au contexte précédent une fois que lI'appel de fonction

se termine (et éventuellement renvoie une valeur)

Factorielle(n = 2)

Factorielle(n = 1)

Si n est inférieur ou égal a 1
Sortir : 1

Sinon
Sortir : 2 * Factorielle(1)

Sin<=1
Sortir : 1
Sinon
Sortir : 1 * Factorielle(0)

<

15

Exécution : Débordement de la pile

Factorielle(n = -7)
Sortir : -7 * Factorielle(-8)

Factorielle(n = -6)
Sortir : -6 * Factorielle(-7)

Factorielle(n)

Factorielle(n = -5)
Sortir : -5 * Factorielle(-6)

Sortir : n * Factorielle(n-1)

Factorielle(n = -4)
Sortir : -4 * Factorielle(-5)

Factorielle(n = -3)
Sortir : -3 * Factorielle(-4)

Factorielle(n = -2)
Sortir : -2 * Factorielle(-3)

Factorielle(n = -1)
Sortir : -1 * Factorielle(-2)

Factorielle(n = 0)
Sortir : 0 * Factorielle(-1)

Factorielle(n = 1)
Sortir : 1 * Factorielle(0)

Factorielle(n = 2)
Sortir : 2 * Factorielle(1)

Factorielle(n = 3)
Sortir : 3 * Factorielle(2)

16

Attention

Un algorithme recursif doit toujours
avoir une condition de terminaison.

17

Factorielle : recursive vs. itérative

Récursive: Itérative :
Factorielle(n) Factorielle(n)
Si n est inférieur ou égal a 1 resultat < 1
Sortir : 1 Tant que n > 1
Sinon résultat < résultat ™ n
Sortir : n * Factorielle(n-1) n<n-1
Sortir : résultat

Complexité:
O(n) O(n)

Problemes

La Factorielle

cPrL

La suite de Fibonacci

Les tours de Hanoi

19

Probleme : Suite de Fibonacci

Mois : Couples :

0 < |

%
%
%
%
%
%
%

Fn)y=Fn—1)+F(n—-2)
F(n — 1) : les couples existants du mois précédant, qui sont toujours la.

F(n — 2) : les nouveaux couples nés ce mois-ci, descendants des couples déja présents il y a 2 mois. 20

¢

Nombre d’or

1
N

Probleme : Suite de Fibonacci
1,1, 2, 3,5,8, 13, 21, 34, ...

Le nieme terme de la suite de Fibonacci.
Fn)=Fn—-1)+Fn-2)

FO)=F1)=1

entrée : entier naturel n
sortie : nieme nombre dans la suite de Fibonacci

Sin<=1
Sortir : 1
Sinon
Sortir : Fibonacci(n - 1) + Fibonacci(n - 2)

22

Suite de Fibonacci : récursive vs. itérative

Itérative :

Récursive : Fibonacci

sortie : nieme nombre dans la
entrée : entier naturel n suite de Fibonacci
sortie : nieme nombre dans la suite de Fibonacci
avant < 0
Sin<=1 dernier « 1
Sortir : 1 Tant que n>1
Sinon tmp < avant + dernier
Sortir : Fibonacci(n - 1) + Fibonacci(n - 2) avant <« dernier
dernier « tmp
nn-1
CO m p | ex'té . Sortir : dernier + avant

0(7) o(n)

23

Probléme : Fibonacci

Fs
Fy
F3
N
F, F;
N
F, F
170 Redondant
Complexite:

O(2")

24

ICC-T 02 : Notation O(-) :

Cott de I'algorithme

cPrL

10172

—_

(e
—
S
)

—_

o
'S
=N

10717 4=

Comparaison des Complexités Algorithmiques

— (1)

—— O(logn)

—©(n)

—— O(nlogn)
0(n?)

— 0(2")
O(n!)

//

10° 10* 102

n (taille de entrée)

Ordres de grandeur

g 3
E 10
§=
o
8o
.\CG 1
= 10
2=
5
3

1071

Impraticables : @(2™), @(n!)

Plus lents, mais souvent acceptés : @(n?) ... @(n¥), O(n.log(n))

Rapides: ©(1), O(logn), O(n)

Comparaison des Complexités Algorithmiques

== @(1)‘
| | —— O(logn)

©(n)
—— O(nlogn)
B e(n?)

s

10° 10! 10?
n (taille de entrée)

25

Problemes

La Factorielle

cPrL

La suite de Fibonacci

Les tours de Hanoi

26

Probleme : Tours de Hanoi

Régles :
o Déplacer tous les disques du pilier source vers le
pilier de destination en utilisant uniqguement un pilier
auxiliaire

o Déplacer un seul disque a chaque fois

o Ne poser un disque que sur le sol ou sur un disque
plus grand

27

Probleme

: Tours de Hanoi (n =1)

source

auxiliaire

destination

28

Probleme : Tours de Hanol (n = 2)

source

auxiliaire

destination

29

Probleme : Tours de Hanorl (n > 2)

par récursion
2 disques
source =1
destination = 2
auxilaire =3

par récursion
2 disques
source =2
destination =3
auxilaire =1

'

30

Tours de Hanoi : Algorithme

entrée : nombre de disques N, entier,n>0
pilier source, entier, 1< source <3
pilier destination, entier, 1< destination < 3
sortie : mouvements pour résoudre le probéme des Tours de Hanoi

auxiliaire < 6 - source - destination
Sin=1

Afficher : “Déplacer disque du pilier ”, source, “ au pilier ”, destination
Sinon

Tours de Hanoi(n - 1, source, auxiliaire)

Tours de Hanoi(1, source, destination)

Tours de Hanoi(n - 1, auxiliaire, destination)

Complexite : 6(2™)

Si on avait 64 disques, il faudrait 264-1 = 101° déplacements,
soit des milliards d'années méme avec un supercalculateur !

31

Probleme : Tours de Hanoi

Aujourd’hui

= Complexité logarithmique

= Tri par fusion

cPrL

33

=P

Recherche d’un élément dans une liste

= LelOest-illa?

¢¢‘¢¢
L 2R 2B 2B 2
*
\ g

e
©

n Liste non-ordonnée:

o Pas de choix, il faut
parcourir toute la liste.

L

Liste ordonnée:

o On peut faire mieux :
recherche par dichotomie.

34

=P

Recherche dichotomique

=

L

Probléme

O

Identifier si un eélement fait partie d'une liste ordonnée.

entrée : Liste ordonée L de nombres entiers de taille n

objet X qu’on veut chercher
sortie : oui si x est dans L, non sinon

Sin=1
Sortir: x=L(1)

milieu « EJ
Si x < L(milieu)

Sortir : Dichotomie(L(1 : milieu), milieu, x)
Sinon

Sortir : Dichotomie(L(1+milieu : n), n - milieu, x)

35

Recherche dichotomique

>
* DN
w
'
o1
(=]

¢ L6 Je e le e e
<> < © IR
IR AR S IR 4R 28 PIIR IR &+

entrée : Liste ordonée L de nombres entiers de taille n

objet X qu’on veut chercher
sortie : oui si x est dans L, non sinon

Sin=1
Sortir : x = |_(1)_ non
milieu « EJ
Si x < L(milieu)
Sortir : Dichotomie(L(1 : milieu), milieu, x)

Sinon
Sortir : Dichotomie(L(1+milieu : n), n - milieu, x)

4O

L 2R 2R 2R 2
L 2R 2B 2B 2

36

Complexité temporelle : Recherche dichotomique

n
A
(\
—
(‘
n
>
2
n
., —
< < L

n
% B —> % = 1(liste de taille 1) n=2"ok=log,n

Complexité : ©(log, n)

cPrL

Aujourd’hui

= Tripar fusion

cPrL

38

Tri par fusion

cPrL

partitionner

fusionner

Tri par fusion

cPrL

Listes de taille 1 (tries)

Fusion

Fusion

40

Tri par fusion

entrée : Liste L non triée de nombres entiers, de taille n
sortie : Liste L’ triée

Sin=1
Sortir: L

milieu « EJ

L, « Tri par fusion(L(1 : milieu), milieu)

Lo < Tri par fusion(L(1+milieu : n), n - milieu)
L’ « fusion(L4,L>)

Sortir: L’

Quelle est la complexité ?

41

Complexité temporelle : Tri par fusion

log, n <

Listes de taille 1 (tries)

Fusion : ©(n)

log, n <

Fusion : (n)

cPrL

42

Complexité temporelle:

Tri par fusion

Complexité: ©(nlog, n)

Comparaison des Complexités Algorithmiques

—6(1)
qé 103 | _G(log I’l) ,
= —0(n)
;6'0 —— O(nlogn)
s —— 0(n?)
P 10" |- a
3
o
@)
- /

| I I T S N | I I T N
10° 10! 10
n (taille de entrée)

43

Tri par fusion : fermeture éclair

fusion

[11 21 315777 879]

-of

entrée : Listes ordonnées L, L, de taille m; et m, resp.
sortie : Liste L de taille m; + m; également ordonnée

ji <1
jo <1

j 1

Tantquej, <myetj, <m,:
Si L1(j1) < L2(2) :
L{) < L1G1)
1<)+
Sinon :
L(j) < L2(j2)
j2 < j2 +1
j<j+1

Sij1=m1+1:

Tantquej, <m,:

L) < L2(i2)

ja2<j2+1

j<j+1
Sinon :

Tantque j; <m;y:

L(j) < L1(41)
Jreji 1
j<j+1

Sortir: L _

CompleX":é . @(‘m1 + mz)

44

Algorithme entier : Tri par fusion

fusion

entrée : Liste L non triée de nombres entiers,

de taille n
sortie : Liste L’ triée

Sin=1
Sortir: L

milieu « EJ

L, « Tri par fusion(L(1 : milieu), milieu)

L, « Tri par fusion(L(1+milieu : n), n - milieu)
L’ « fusion(L,,L>)

Sortir: L’

cPrL

entrée : Listes ordonnées L4, L, de taille m; et m, resp.
sortie : Liste L de taille m; + m; également ordonnée

j1 <1
j2 <1
j<1

Tantquej, <myetj, <m,:

Si L1(j1) < La(2) :
L() < L1(1)
jr<ji+1

Sinon:
L() < L2(i2)
j2a<j2+1

j<i+1

Sij1=m1+1:

Tantquej, <m,:

L) < L2(i2)

ja2<j2+1

j<j+1
Sinon :

Tantque j; <m;:

L(j) < L1(41)
Jreji 1
j<j+1

Sortir: L

45

L

Résumé Cours 3 - ICC-T

PrL

La recursivité permet de résoudre les problemes qui sont décomposables en sous-

problemes plus simples du méme probleme.

(©)

(©)

(©)

(©)

(©)

Factorielle

Suite de Fibonacci

Tours de Hanoi
Recherche par dichotomie

Tri par fusion

Lorsgu'on cherche un éléement dans une liste triée, la recherche par dichotomie

permet une résolution plus efficace, avec une complexité de 0(log, n) comparée ala

recherche exhaustive en 0(n).

Le tri par fusion, de complexité 0(nlog, n) , permet de trier une liste plus efficacement

que le tri par insertion, de complexité 0(n?) dans le pire des cas.

46

yerv

rafael.pires@epfl.ch

EPFL

