
Information, Calcul et Communication

CS-119(k) ICC – Théorie
Semaine 3

Rafael Pires
rafael.pires@epfl.ch

Lausanne, 07.03.2025

mailto:rafael.pires@epfl.ch

Précédemment, dans ICC-T 02

2

Artificial
Intelligence

§ Les sous-algorithmes
o Problème : Tri par insertion

§ La complexité temporelle

o nombre d’opérations élémentaires dans le pire des cas

§ La notation Grand ThetaΘ
o Problème : Deux font la paire

Annonces

3

51 3 4 6 7 8 9 10 11 12 13 142

51 4 6 7 8 10 11 12 13 142

P

T

Cours et séries, partie programmation

Cours et séries, partie théorique

14.03 ICC-T Changement de salle
exceptionnel : CM14

31.03 ICC-P Cours par zoom (aussi diffusé en salle)
Séance d’exercices normale

3

Aujourd’hui

4

§ La récursivité

§ Complexité logarithmique

§ Tri par fusion

La légende des tours de Hanoï

5

Conception d’algorithmes : Diviser pour mieux régner

6

…

Problème entier

…

Sous-problèmes Cas trivial

Récursivité

7
Problème entier Sous-problèmes Cas trivial

Récursivité vs. récurrence

8

• La Factorielle :
𝑛! = 𝑛 ∗ (𝑛 − 1)!

0! = 1

• Suite de Fibonacci :
𝐹 𝑛 = 𝐹 𝑛 − 1 + 𝐹(𝑛 − 2)

𝐹 0 = 𝐹 1 = 1

• Les coefficients binomiaux :
𝑛
𝑘 = 𝑛 − 1

𝑘 − 1 + 𝑛 − 1
𝑘

𝑛
0 = 𝑛

𝑛 = 1

Problèmes

9

La Factorielle La suite de Fibonacci Les tours de Hanoï

Problème : Factorielle

10

La factorielle d’un nombre entier n.
𝑛! = 𝑛 ∗ 𝑛 − 1 ∗ ⋯∗ 2 ∗ 1

𝑛! = 𝑛 ∗ (𝑛 − 1)!

Attention

11

Un algorithme récursif doit toujours
avoir une condition de terminaison.

Problème : Factorielle

12

La factorielle d’un nombre entier n.
𝑛! = 𝑛 ∗ 𝑛 − 1 ∗ ⋯∗ 2 ∗ 1
𝑛! = 𝑛 ∗ 𝑛 − 1 ! et 𝟎! = 𝟏

Si n ≤ 1
Sortir : 1

Sinon
Sortir : n * Factorielle(n-1)

Factorielle

entrée : entier naturel n
sortie : n!

Condition de
terminaison

Recombinaison

Instance plus
simple

Si terminaison(X)
Sortir : …

Sinon
…
Mon algo récursif(entrée de l’instance réduite)
…

Mon algo récursif

entrée : X
sortie : …

Comment implémenter la récursivité

13

• Un algorithme récursif doit avoir une
condition de terminaison.

• Un algorithme récursif fait appel à lui-
même avec une instance plus simple
du problème original.

• Parfois, il faut recombiner les résultats
d’appels récursifs pour former la
solution au problème de départ.

Exécution : Factorielle

14

Si n <= 1
Sortir : 1

Sinon
Sortir : 3 * Factorielle(2)

Factorielle(n = 3)

Si n <= 1
Sortir : 1

Sinon
Sortir : 2 * Factorielle(1)

Factorielle(n = 2)

Si n <= 1
Sortir : 1

Sinon
Sortir : 1 * Factorielle(0)

Factorielle(n = 1)

Si n <= 1
Sortir : 1

Sinon
Sortir : 2 * 1

Factorielle(n = 2)

Si n <= 1
Sortir : 1

Sinon
Sortir : 3 * 2

Factorielle(n = 3)

Réponse : 6

Pile d’exécution

Factorielle(n = 1)
Renvoyer : 1

Factorielle(n = 2)
Renvoyer : 2 * Factorielle(1)

Factorielle(n = 3)
Renvoyer : 3 * Factorielle(2)

Pile d’exécutionPile d’exécution

Factorielle(n = 3)
Renvoyer : 3 * Factorielle(2)

Pile d’exécution

Factorielle(n = 2)
Renvoyer : 2 * Factorielle(1)

Factorielle(n = 3)
Renvoyer : 3 * Factorielle(2)

Pile d’exécution

Factorielle(n = 2)
Renvoyer : 2 * 1

Factorielle(n = 3)
Renvoyer : 3 * Factorielle(2)

Pile d’exécution

Factorielle(n = 3)
Renvoyer : 3 * 2

Pile d’exécution

Factorielle(n = 3)
Sortir : 6

Si n <= 1
Sortir : 1

Sinon
Sortir : n * Factorielle(n-1)

Factorielle

entrée : entier naturel n
sortie : n!

Quelques observations

15

• chaque appel récursif à une fonction crée son propre contexte

• le flux de contrôle revient au contexte précédent une fois que l'appel de fonction
se termine (et éventuellement renvoie une valeur)

Si n <= 1
Sortir : 1

Sinon
Sortir : 2 * Factorielle(1)

Factorielle(n = 2)

Si n <= 1
Sortir : 1

Sinon
Sortir : 1 * Factorielle(0)

Factorielle(n = 1)

Si n est inférieur ou égal à 1
Sortir : 1

Sinon
Sortir : 2 * Factorielle(1)

Factorielle(n = 2)

Si n <= 1
Sortir : 1

Sinon
Sortir : 1 * Factorielle(0)

Factorielle(n = 1)

Exécution : Débordement de la pile

16

Sortir : n * Factorielle(n-1)

Factorielle(n)

Factorielle(n = 3)
Sortir : 3 * Factorielle(2)

Factorielle(n = 2)
Sortir : 2 * Factorielle(1)

Factorielle(n = 1)
Sortir : 1 * Factorielle(0)

Factorielle(n = 0)
Sortir : 0 * Factorielle(-1)

Factorielle(n = -1)
Sortir : -1 * Factorielle(-2)

Factorielle(n = -2)
Sortir : -2 * Factorielle(-3)

Factorielle(n = -3)
Sortir : -3 * Factorielle(-4)

Factorielle(n = -4)
Sortir : -4 * Factorielle(-5)

Factorielle(n = -5)
Sortir : -5 * Factorielle(-6)

Factorielle(n = -6)
Sortir : -6 * Factorielle(-7)

Factorielle(n = -7)
Sortir : -7 * Factorielle(-8)

Sortir : -8 * Factorielle(-9)

Attention

17

Un algorithme récursif doit toujours
avoir une condition de terminaison.

Factorielle : récursive vs. itérative

18

Si n est inférieur ou égal à 1
Sortir : 1

Sinon
Sortir : n * Factorielle(n-1)

Factorielle(n)

Récursive : Itérative :

résultat ← 1
Tant que n > 1

résultat ← résultat * n
n← n -1

Sortir : résultat

Factorielle(n)

Complexité :
Θ(𝑛) Θ(𝑛)

Problèmes

19

La Factorielle La suite de Fibonacci Les tours de Hanoï

Problème : Suite de Fibonacci

20

Mois :

0

1

2

3

4

5

Couples :

1

1

2

3

5

8

𝐹 𝑛 = 𝐹 𝑛 − 1 + 𝐹(𝑛 − 2)
𝐹 𝑛 − 1 : les couples existants du mois précédant, qui sont toujours là.

𝐹(𝑛 − 2) : les nouveaux couples nés ce mois-ci, descendants des couples déjà présents il y a 2 mois.

2 3

58

13
21

34

Nombre d’or : 𝜙

21

𝑥

𝑦

𝜙 =
𝑥
𝑦

Problème : Suite de Fibonacci

22

Le nième terme de la suite de Fibonacci.
𝐹 𝑛 = 𝐹 𝑛 − 1 + 𝐹(𝑛 − 2)

𝐹 0 = 𝐹 1 = 1

1, 1, 2, 3, 5, 8, 13, 21, 34, …

Si n <= 1
Sortir : 1

Sinon
Sortir : Fibonacci(n - 1) + Fibonacci(n - 2)

Fibonacci

entrée : entier naturel n
sortie : nième nombre dans la suite de Fibonacci

Suite de Fibonacci : récursive vs. itérative

23

Récursive :
Itérative :

Complexité :
Θ(?) Θ(𝑛)

Si n <= 1
Sortir : 1

Sinon
Sortir : Fibonacci(n - 1) + Fibonacci(n - 2)

Fibonacci

entrée : entier naturel n
sortie : nième nombre dans la suite de Fibonacci

avant ← 0
dernier ← 1
Tant que n > 1

tmp ← avant + dernier
avant ← dernier
dernier ← tmp
n ← n - 1

Sortir : dernier + avant

Fibonacci

entrée : entier naturel n
sortie : nième nombre dans la
suite de Fibonacci

Problème : Fibonacci

24

𝐹!𝐹"

𝐹#

𝐹$ 𝐹%

𝐹! 𝐹$

𝐹%

𝐹%𝐹$

𝐹&

𝐹&𝐹% 𝐹&𝐹%

Redondant

Complexité :
Θ(2!)

ICC-T 02 : Notation 𝚯($) : Ordres de grandeur

25

100 101 102
10→17

1046

10109

10172

𝐿 (taille de l’entrée)

Co
ût

de
l’a
lg
or
ith

m
e

Comparaison des Complexités Algorithmiques

ω(1)
ω(log𝐿)
ω(𝐿)
ω(𝐿 log𝐿)
ω(𝐿2)
ω(2𝐿)
ω(𝐿!)

1

100 101 102

10→1

101

103

𝐿 (taille de l’entrée)

Co
ût

de
l’a
lg
or
ith

m
e

Comparaison des Complexités Algorithmiques

ω(1)
ω(log𝐿)
ω(𝐿)
ω(𝐿 log𝐿)
ω(𝐿2)

1

Impraticables : 𝜣(𝟐𝒏), 𝜣 𝒏!
Plus lents, mais souvent acceptés : 𝜣(𝒏𝟐) … 𝜣(𝒏𝒌), 𝜣 𝒏. 𝐥𝐨𝐠(𝒏)
Rapides: 𝜣(𝟏), 𝜣 𝐥𝐨𝐠 𝒏 ,𝜣 𝒏

Problèmes

26

La Factorielle La suite de Fibonacci Les tours de Hanoï

Problème : Tours de Hanoï

27

Régles :

o Déplacer tous les disques du pilier source vers le
pilier de destination en utilisant uniquement un pilier
auxiliaire

o Déplacer un seul disque à chaque fois

o Ne poser un disque que sur le sol ou sur un disque
plus grand

Problème : Tours de Hanoï (n = 1)

28

source auxiliaire destination

Problème : Tours de Hanoï (n = 2)

29

source auxiliaire destination

Problème : Tours de Hanoï (n > 2)

30

par récursion
2 disques
source = 1
destination = 2
auxilaire = 3

1 2 3par récursion
2 disques
source = 2
destination = 3
auxilaire = 1

Tours de Hanoï : Algorithme

31

auxiliaire ← 6 - source - destination
Si n = 1

Afficher : “Déplacer disque du pilier ”, source, “ au pilier ”, destination
Sinon

Tours de Hanoï(n - 1, source, auxiliaire)
Tours de Hanoï(1, source, destination)
Tours de Hanoï(n - 1, auxiliaire, destination)

Tours de Hanoï

entrée : nombre de disques n, entier, n > 0
pilier source, entier, 1≤ source ≤ 3
pilier destination, entier, 1≤ destination ≤ 3

sortie : mouvements pour résoudre le probème des Tours de Hanoï

Complexité : Θ(2!)
Si on avait 64 disques, il faudrait 264−1 ≈ 1019 déplacements,
soit des milliards d'années même avec un supercalculateur !

Problème : Tours de Hanoï

32

1 2 31 -> 3
1 -> 2
3 -> 2
1 -> 3
2 -> 1
2 -> 3
1 -> 3

1 -> 3
1 -> 2
3 -> 2
1 -> 3
2 -> 1
2 -> 3
1 -> 3

1 -> 3
1 -> 2
3 -> 2
1 -> 3
2 -> 1
2 -> 3
1 -> 3

1 -> 3
1 -> 2
3 -> 2
1 -> 3
2 -> 1
2 -> 3
1 -> 3

1 -> 3
1 -> 2
3 -> 2
1 -> 3
2 -> 1
2 -> 3
1 -> 3

1 -> 3
1 -> 2
3 -> 2
1 -> 3
2 -> 1
2 -> 3
1 -> 3

1 -> 3
1 -> 2
3 -> 2
1 -> 3
2 -> 1
2 -> 3
1 -> 3

1 -> 3
1 -> 2
3 -> 2
1 -> 3
2 -> 1
2 -> 3
1 -> 3

Aujourd’hui

33

§ La récursivité

§ Complexité logarithmique

§ Tri par fusion

Recherche d’un élément dans une liste

34

§ Le 10 est-il là ?

§ Liste non-ordonnée :
o Pas de choix, il faut

parcourir toute la liste.

§ Liste ordonnée :
o On peut faire mieux :

recherche par dichotomie.

Recherche dichotomique

35

§ Problème
o Identifier si un élément fait partie d'une liste ordonnée.

Si n = 1
Sortir : x = L(1)

milieu ← 𝒏
𝟐

Si x≤ L(milieu)
Sortir : Dichotomie(L(1 : milieu), milieu, x)

Sinon
Sortir : Dichotomie(L(1+milieu : n), n - milieu, x)

Dichotomie

entrée : Liste ordonée L de nombres entiers de taille n
objet x qu’on veut chercher

sortie : oui si x est dans L, non sinon

Recherche dichotomique

36

Si n = 1
Sortir : x = L(1)

milieu ← 𝒏
𝟐

Si x≤ L(milieu)
Sortir : Dichotomie(L(1 : milieu), milieu, x)

Sinon
Sortir : Dichotomie(L(1+milieu : n), n - milieu, x)

Dichotomie

entrée : Liste ordonée L de nombres entiers de taille n
objet x qu’on veut chercher

sortie : oui si x est dans L, non sinon

non

Complexité temporelle : Recherche dichotomique

37

𝑛

𝑛
2
𝑛
2!

𝑛
2"

…

𝑛
2#

𝑛 = 2" ↔ 𝑘 = log! 𝑛
$
!#
= 1 (liste de taille 1)

Complexité : Θ(log" 𝑛)

𝑘

Aujourd’hui

38

§ La récursivité

§ Complexité logarithmique

§ Tri par fusion

Tri par fusion

39

trier trier

fusionner

partitionner

Tri par fusion

40

123 4

1 2 3 4

2 3 1 4

23 4 1

23 4 1 Listes de taille 1 (triées)

Fusion

Fusion

Tri par fusion

41

123 4

1 2 3 4

2 3 1 4

23 4 1

23 4 1

Si n = 1
Sortir : L

milieu ← 𝒏
𝟐

L1 ← Tri par fusion(L(1 : milieu), milieu)
L2 ← Tri par fusion(L(1+milieu : n), n - milieu)
L’ ← fusion(L1,L2)
Sortir : L’

Tri par fusion

entrée : Liste L non triée de nombres entiers, de taille n
sortie : Liste L’ triée

Quelle est la complexité ?

Complexité temporelle : Tri par fusion

42

123 4

1 2 3 4

2 3 1 4

23 4 1

23 4 1 Listes de taille 1 (triées)

Fusion

Fusion

log! 𝑛

log! 𝑛

Complexité : Θ(𝑛 log" 𝑛)

: Θ(𝑛)

: Θ(𝑛)

Complexité temporelle : Tri par fusion

43

123 4

1 2 3 4

2 3 1 4

23 4 1

23 4 1

Complexité : Θ(𝑛 log" 𝑛)

100 101 102

10→1

101

103

𝐿 (taille de l’entrée)

Co
ût

de
l’a
lg
or
ith

m
e

Comparaison des Complexités Algorithmiques

ω(1)
ω(log𝐿)
ω(𝐿)
ω(𝐿 log𝐿)
ω(𝐿2)

1

Tri par fusion : fermeture éclair

44

j1 ← 1
j2 ← 1
j ← 1

Tant que j1 ≤ m1 et j2 ≤ m2 :
Si L1(j1) ≤ L2(j2) :

L(j) ← L1(j1)
j1 ← j1 + 1

Sinon :
L(j) ← L2(j2)
j2 ← j2 + 1

j ← j + 1

fusion

entrée : Listes ordonnées L1, L2 de taille m1 et m2 resp.
sortie : Liste L de taille m1 + m2 également ordonnée

Si j1 = m1 + 1 :
Tant que j2 ≤ m2 :

L(j) ← L2(j2)
j2 ← j2 + 1
j ← j + 1

Sinon :
Tant que j1 ≤ m1 :

L(j) ← L1(j1)
j1 ← j1 + 1
j ← j + 1

Sortir : L

Complexité : Θ(𝑚' +𝑚")

L1 = [2, 5, 8], m1 = 3
L2 = [1, 3, 7, 9], m2 = 4

L = []

j2 = 5

j1 = 4

1, 2, 3,5,7, 8,9

j = 8

Algorithme entier : Tri par fusion

45

j1 ← 1
j2 ← 1
j ← 1

Tant que j1 ≤ m1 et j2 ≤ m2 :
Si L1(j1) ≤ L2(j2) :

L(j) ← L1(j1)
j1 ← j1 + 1

Sinon :
L(j) ← L2(j2)
j2 ← j2 + 1

j ← j + 1

fusion

entrée : Listes ordonnées L1, L2 de taille m1 et m2 resp.
sortie : Liste L de taille m1 + m2 également ordonnée

Si j1 = m1 + 1 :
Tant que j2 ≤ m2 :

L(j) ← L2(j2)
j2 ← j2 + 1
j ← j + 1

Sinon :
Tant que j1 ≤ m1 :

L(j) ← L1(j1)
j1 ← j1 + 1
j ← j + 1

Sortir : L

Si n = 1
Sortir : L

milieu ← 𝒏
𝟐

L1 ← Tri par fusion(L(1 : milieu), milieu)
L2 ← Tri par fusion(L(1+milieu : n), n - milieu)
L’ ← fusion(L1,L2)
Sortir : L’

Tri par fusion

entrée : Liste L non triée de nombres entiers,
de taille n

sortie : Liste L’ triée

Résumé Cours 3 – ICC-T

46

§ La récursivité permet de résoudre les problèmes qui sont décomposables en sous-
problèmes plus simples du même problème.

o Factorielle

o Suite de Fibonacci
o Tours de Hanoï

o Recherche par dichotomie

o Tri par fusion
§ Lorsqu'on cherche un élément dans une liste triée, la recherche par dichotomie

permet une résolution plus efficace, avec une complexité de Θ log! 𝑛 comparée à la

recherche exhaustive en Θ 𝑛 .

§ Le tri par fusion, de complexité Θ 𝑛log! 𝑛 , permet de trier une liste plus efficacement
que le tri par insertion, de complexité Θ(𝑛!) dans le pire des cas.

rafael.pires@epfl.ch

Merci 47

